Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Stem Cell Reports ; 18(11): 2174-2189, 2023 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-37832543

RESUMEN

A complete knockout of a single key pluripotency gene may drastically affect embryonic stem cell function and epigenetic reprogramming. In contrast, elimination of only one allele of a single pluripotency gene is mostly considered harmless to the cell. To understand whether complex haploinsufficiency exists in pluripotent cells, we simultaneously eliminated a single allele in different combinations of two pluripotency genes (i.e., Nanog+/-;Sall4+/-, Nanog+/-;Utf1+/-, Nanog+/-;Esrrb+/- and Sox2+/-;Sall4+/-). Although these double heterozygous mutant lines similarly contribute to chimeras, fibroblasts derived from these systems show a significant decrease in their ability to induce pluripotency. Tracing the stochastic expression of Sall4 and Nanog at early phases of reprogramming could not explain the seen delay or blockage. Further exploration identifies abnormal methylation around pluripotent and developmental genes in the double heterozygous mutant fibroblasts, which could be rescued by hypomethylating agent or high OSKM levels. This study emphasizes the importance of maintaining two intact alleles for pluripotency induction.


Asunto(s)
Metilación de ADN , Células Madre Pluripotentes Inducidas , Metilación de ADN/genética , Reprogramación Celular/genética , Haploinsuficiencia , Fibroblastos/metabolismo , Células Madre Embrionarias/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Proteína Homeótica Nanog/genética , Proteína Homeótica Nanog/metabolismo
2.
Nat Commun ; 14(1): 3359, 2023 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-37291192

RESUMEN

Human trophoblast stem cells (hTSCs) can be derived from embryonic stem cells (hESCs) or be induced from somatic cells by OCT4, SOX2, KLF4 and MYC (OSKM). Here we explore whether the hTSC state can be induced independently of pluripotency, and what are the mechanisms underlying its acquisition. We identify GATA3, OCT4, KLF4 and MYC (GOKM) as a combination of factors that can generate functional hiTSCs from fibroblasts. Transcriptomic analysis of stable GOKM- and OSKM-hiTSCs reveals 94 hTSC-specific genes that are aberrant specifically in OSKM-derived hiTSCs. Through time-course-RNA-seq analysis, H3K4me2 deposition and chromatin accessibility, we demonstrate that GOKM exert greater chromatin opening activity than OSKM. While GOKM primarily target hTSC-specific loci, OSKM mainly induce the hTSC state via targeting hESC and hTSC shared loci. Finally, we show that GOKM efficiently generate hiTSCs from fibroblasts that harbor knockout for pluripotency genes, further emphasizing that pluripotency is dispensable for hTSC state acquisition.


Asunto(s)
Reprogramación Celular , Células Madre Pluripotentes Inducidas , Humanos , Reprogramación Celular/genética , Trofoblastos , Fibroblastos , Células Madre Embrionarias , Cromatina/genética , Factor 3 de Transcripción de Unión a Octámeros/genética
3.
Nat Commun ; 13(1): 3475, 2022 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-35715410

RESUMEN

Following fertilization, it is only at the 32-64-cell stage when a clear segregation between cells of the inner cell mass and trophectoderm is observed, suggesting a 'T'-shaped model of specification. Here, we examine whether the acquisition of these two states in vitro, by nuclear reprogramming, share similar dynamics/trajectories. Using a comparative parallel multi-omics analysis (i.e., bulk RNA-seq, scRNA-seq, ATAC-seq, ChIP-seq, RRBS and CNVs) on cells undergoing reprogramming to pluripotency and TSC state we show that each reprogramming system exhibits specific trajectories from the onset of the process, suggesting 'V'-shaped model. We describe in detail the various trajectories toward the two states and illuminate reprogramming stage-specific markers, blockers, facilitators and TSC subpopulations. Finally, we show that while the acquisition of the TSC state involves the silencing of embryonic programs by DNA methylation, during the acquisition of pluripotency these regions are initially defined but retain inactive by the elimination of H3K27ac.


Asunto(s)
Blastocisto , Reprogramación Celular , Blastocisto/metabolismo , Células Cultivadas , Reprogramación Celular/genética , Metilación de ADN
4.
Cell Stem Cell ; 24(6): 983-994.e7, 2019 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-31031139

RESUMEN

Following fertilization, totipotent cells undergo asymmetric cell divisions, resulting in three distinct cell types in the late pre-implantation blastocyst: epiblast (Epi), primitive endoderm (PrE), and trophectoderm (TE). Here, we aim to understand whether these three cell types can be induced from fibroblasts by one combination of transcription factors. By utilizing a sophisticated fluorescent knockin reporter system, we identified a combination of five transcription factors, Gata3, Eomes, Tfap2c, Myc, and Esrrb, that can reprogram fibroblasts into induced pluripotent stem cells (iPSCs), induced trophoblast stem cells (iTSCs), and induced extraembryonic endoderm stem cells (iXENs), concomitantly. In-depth transcriptomic, chromatin, and epigenetic analyses provide insights into the molecular mechanisms that underlie the reprogramming process toward the three cell types. Mechanistically, we show that the interplay between Esrrb and Eomes during the reprogramming process determines cell fate, where high levels of Esrrb induce a XEN-like state that drives pluripotency and high levels of Eomes drive trophectodermal fate.


Asunto(s)
Blastocisto/fisiología , Endodermo/fisiología , Fibroblastos/fisiología , Células Madre Pluripotentes Inducidas/fisiología , Trofoblastos/fisiología , Animales , Diferenciación Celular , Linaje de la Célula , Células Cultivadas , Reprogramación Celular , Implantación del Embrión , Ratones , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Factores de Transcripción/metabolismo
5.
Nucleic Acids Res ; 46(16): 8299-8310, 2018 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-29986092

RESUMEN

Mammalian DNA replication is a highly organized and regulated process. Large, Mb-sized regions are replicated at defined times along S-phase. Replication Timing (RT) is thought to play a role in shaping the mammalian genome by affecting mutation rates. Previous analyses relied on somatic RT profiles. However, only germline mutations are passed on to offspring and affect genomic composition. Therefore, germ cell RT information is necessary to evaluate the influences of RT on the mammalian genome. We adapted the RT mapping technique for limited amounts of cells, and measured RT from two stages in the mouse germline - primordial germ cells (PGCs) and spermatogonial stem cells (SSCs). RT in germline cells exhibited stronger correlations to both mutation rate and recombination hotspots density than those of RT in somatic tissues, emphasizing the importance of using correct tissues-of-origin for RT profiling. Germline RT maps exhibited stronger correlations to additional genetic features including GC-content, transposable elements (SINEs and LINEs), and gene density. GC content stratification and multiple regression analysis revealed independent contributions of RT to SINE, gene, mutation, and recombination hotspot densities. Together, our results establish a central role for RT in shaping multiple levels of mammalian genome composition.


Asunto(s)
Momento de Replicación del ADN/genética , Replicación del ADN/genética , Genoma/genética , Células Germinativas/metabolismo , Células Madre/metabolismo , Animales , Composición de Base/genética , Línea Celular Tumoral , Células Cultivadas , Elementos Transponibles de ADN/genética , Femenino , Células Germinativas/citología , Mutación de Línea Germinal , Masculino , Mamíferos/genética , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ratones Endogámicos NOD , Ratones SCID , Ratones Transgénicos , Elementos de Nucleótido Esparcido Corto/genética , Células Madre/citología
6.
Nat Struct Mol Biol ; 24(12): 1132-1138, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29131141

RESUMEN

Many regions of the genome replicate asynchronously and are expressed monoallelically. It is thought that asynchronous replication may be involved in choosing one allele over the other, but little is known about how these patterns are established during development. We show that, unlike somatic cells, which replicate in a clonal manner, embryonic and adult stem cells are programmed to undergo switching, such that daughter cells with an early-replicating paternal allele are derived from mother cells that have a late-replicating paternal allele. Furthermore, using ground-state embryonic stem (ES) cells, we demonstrate that in the initial transition to asynchronous replication, it is always the paternal allele that is chosen to replicate early, suggesting that primary allelic choice is directed by preset gametic DNA markers. Taken together, these studies help define a basic general strategy for establishing allelic discrimination and generating allelic diversity throughout the organism.


Asunto(s)
Células Madre Adultas/citología , Proliferación Celular/genética , Replicación del ADN/genética , Células Madre Embrionarias/citología , Impresión Genómica/genética , Alelos , Animales , Línea Celular , Metilación de ADN/genética , Marcadores Genéticos/genética , Ratones
7.
Cell Stem Cell ; 17(5): 543-56, 2015 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-26412562

RESUMEN

Induced pluripotent stem cells (iPSCs) undergo extensive nuclear reprogramming and are generally indistinguishable from embryonic stem cells (ESCs) in their functional capacity and transcriptome and DNA methylation profiles. However, direct conversion of cells from one lineage to another often yields incompletely reprogrammed, functionally compromised cells, raising the question of whether pluripotency is required to achieve a high degree of nuclear reprogramming. Here, we show that transient expression of Gata3, Eomes, and Tfap2c in mouse fibroblasts induces stable, transgene-independent trophoblast stem-like cells (iTSCs). iTSCs possess transcriptional profiles highly similar to blastocyst-derived TSCs, with comparable methylation and H3K27ac patterns and genome-wide H2A.X deposition. iTSCs generate trophoectodermal lineages upon differentiation, form hemorrhagic lesions, and contribute to developing placentas in chimera assays, indicating a high degree of nuclear reprogramming, with no evidence of passage through a transient pluripotent state. Together, these data demonstrate that extensive nuclear reprogramming can be achieved independently of pluripotency.


Asunto(s)
Linaje de la Célula , Núcleo Celular/metabolismo , Reprogramación Celular , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Trofoblastos/citología , Animales , Células Cultivadas , Ratones , Ratones Transgénicos , Trofoblastos/metabolismo
9.
Cancer Res ; 73(14): 4383-94, 2013 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-23651636

RESUMEN

Insulin receptor substrates 1 and 2 (IRS1/2) mediate mitogenic and antiapoptotic signaling from insulin-like growth factor 1 receptor (IGF-IR), insulin receptor (IR), and other oncoproteins. IRS1 plays a central role in cancer cell proliferation, its expression is increased in many human malignancies, and its upregulation mediates resistance to anticancer drugs. IRS2 is associated with cancer cell motility and metastasis. Currently, there are no anticancer agents that target IRS1/2. We present new IGF-IR/IRS-targeted agents (NT compounds) that promote inhibitory Ser-phosphorylation and degradation of IRS1 and IRS2. Elimination of IRS1/2 results in long-term inhibition of IRS1/2-mediated signaling. The therapeutic significance of this inhibition in cancer cells was shown while unraveling a novel mechanism of resistance to B-RAF(V600E/K) inhibitors. We found that IRS1 is upregulated in PLX4032-resistant melanoma cells and in cell lines derived from patients whose tumors developed PLX4032 resistance. In both settings, NT compounds led to the elimination of IRS proteins and evoked cell death. Treatment with NT compounds in vivo significantly inhibited the growth of PLX4032-resistant tumors and displayed potent antitumor effects in ovarian and prostate cancers. Our findings offer preclinical proof-of-concept for IRS1/2 inhibitors as cancer therapeutics including PLX4032-resistant melanoma. By the elimination of IRS proteins, such agents should prevent acquisition of resistance to mutated-B-RAF inhibitors and possibly restore drug sensitivity in resistant tumors.


Asunto(s)
Antineoplásicos/farmacología , Proteínas Sustrato del Receptor de Insulina/metabolismo , Melanoma/tratamiento farmacológico , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Animales , Línea Celular Tumoral , Regulación hacia Abajo/efectos de los fármacos , Femenino , Células HCT116 , Células Hep G2 , Humanos , Proteínas Sustrato del Receptor de Insulina/antagonistas & inhibidores , Proteínas Sustrato del Receptor de Insulina/genética , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/genética , Melanoma/genética , Melanoma/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Fosforilación , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Epigenetics ; 2(4): 214-22, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-18075316

RESUMEN

Disruptions in the expression of the BDNF gene that encodes a neurotrophic factor involved in neuronal survival, differentiation and synaptic plasticity has been proposed to contribute to the molecular pathogenesis of Rett syndrome. Rett syndrome (RTT) is a neurodevelopmental disorder, caused by mutations in the X-linked methyl CpG binding protein 2 gene (MeCP2). MeCP2 deficiency in the brain has been shown to decrease overall expression of BDNF in spite of an observed increase in the activity of promoter III that appears to be controlled directly by MeCP2. Therefore, how MeCP2 deficiency causes an overall downregulation of BDNF expression was an enigma. Here we report that MeCP2 deficiency in human and mouse brain causes an increase in expression of two neuronal gene transcriptional repressors REST (RE1 silencing transcription factor), and CoREST. MeCP2 binds to and is involved in repression of Rest and CoRest promoters despite their unmethylated state. MeCP2 depletion is associated with a change in the histone modification profile to a more active conformation. The elevated levels of REST and CoREST in the brain of RTT patients and MeCP2 deficient mice result in downregulation of BDNF, apparently by their binding to the RE1 (element) located between the first two promoters of the BDNF gene. Interestingly, the NTRK2 gene that encodes the BDNF receptor, TRKB, was overexpressed in MeCP2 deficient human and mouse brains either directly or as an attempt to compensate for BDNF deficiency.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Encéfalo/metabolismo , Proteínas de Unión al ADN/fisiología , Proteína 2 de Unión a Metil-CpG/fisiología , Proteínas del Tejido Nervioso/fisiología , Receptor trkB/biosíntesis , Proteínas Represoras/fisiología , Animales , Secuencia de Bases , Factor Neurotrófico Derivado del Encéfalo/genética , Inmunoprecipitación de Cromatina , Proteínas Co-Represoras , Metilación de ADN , Cartilla de ADN , Femenino , Humanos , Masculino , Proteína 2 de Unión a Metil-CpG/genética , Ratones , Ratones Endogámicos C57BL , Regiones Promotoras Genéticas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
11.
Hum Genet ; 118(1): 91-8, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16133181

RESUMEN

Around 80% of Rett syndrome (RS) cases have a mutation or deletion within the coding sequence of the MeCP2 gene. The other RS patients remain genetically undiagnosed. A significant fraction (10-15%) of disease-causing mutations in humans, affect pre-mRNA splicing. Two potential splice mutations were found in the MeCP2 gene in RS patients, however it was not clear whether these mutations in fact interfere with splicing and consequently cause RS. One such mutation is a deletion of the GT dinucleotide at the 5' donor splice site of exon 1 and the other a deletion of the T nucleotide in the polypyrimidine tract (PPT) of intron 3. Here we experimentally assess the effects exerted by these mutations on the expression of MeCP2 in patients' blood samples and on splicing of the MeCP2 transcript using a hybrid minigene in transient transfection experiments. The results revealed that the Delta T mutation in the PPT is a benign polymorphism and that the GT deletion in intron 1 is a bona fide splicing mutation that causes a complete skipping of exon 1 in the minigene transfection experiment. This explains the observed complete elimination of the MeCP2 message and protein in the lymphoblast clones of the RS patient that carry the mutation on the active X. An analysis of the MeCP2 transcript and protein production in lymphoblast clones, as described here, can be used to confirm clinically diagnosed RS patients with no mutation in the MeCP2 coding sequence. This will enable RS diagnosis without specifically identifying a mutation.


Asunto(s)
Pruebas Genéticas , Mutación , Empalme del ARN , Síndrome de Rett/diagnóstico , Síndrome de Rett/genética , Secuencia de Bases , Western Blotting , Línea Celular , Cromosomas Humanos X , Humanos , Proteína 2 de Unión a Metil-CpG/genética , ARN Mensajero/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transfección
12.
Hum Mol Genet ; 14(8): 1049-58, 2005 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-15757975

RESUMEN

Rett syndrome (RS) is a severe and progressive neurodevelopmental disorder caused by heterozygous mutations in the X-linked methyl CpG binding protein 2 (MeCP2) gene. MeCP2 is a nuclear protein that binds specifically to methylated DNA and functions as a general transcription repressor in the context of chromatin remodeling complexes. RS shares clinical features with those of Angelman syndrome (AS), an imprinting neurodevelopmental disorder. In AS patients, the maternally expressed copy of UBE3A that codes for the ubiquitin protein ligase 3A (E6-AP) is repressed. The similar phenotype of these two syndromes led us to hypothesize that part of the RS phenotype is due to MeCP2-associated silencing of UBE3A. Indeed, UBE3A mRNA and protein are shown here to be significantly reduced in human and mouse MECP2 deficient brains. This reduced UBE3A level was associated with biallelic production of the UBE3A antisense RNA. In addition, MeCP2 deficiency resulted in elevated histone H3 acetylation and H3(K4) methylation and reduced H3(K9) methylation at the PWS/AS imprinting center, with no effect on DNA methylation or SNRPN expression. We conclude, therefore, that MeCP2 deficiency causes epigenetic aberrations at the PWS imprinting center. These changes in histone modifications result in loss of imprinting of the UBE3A antisense gene in the brain, increase in UBE3A antisense RNA level and, consequently reduction in UBE3A production.


Asunto(s)
Proteínas Cromosómicas no Histona/deficiencia , Proteínas de Unión al ADN/deficiencia , Epigénesis Genética , Impresión Genómica , Síndrome de Rett/metabolismo , Ubiquitina-Proteína Ligasas/genética , Síndrome de Angelman/genética , Síndrome de Angelman/metabolismo , Animales , Encéfalo/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas de Unión al ADN/genética , Humanos , Proteína 2 de Unión a Metil-CpG , Ratones , Síndrome de Prader-Willi/genética , Síndrome de Prader-Willi/metabolismo , Regiones Promotoras Genéticas , Proteínas Represoras/genética , Síndrome de Rett/genética , Ubiquitina-Proteína Ligasas/biosíntesis
13.
Hum Mol Genet ; 13(22): 2767-79, 2004 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-15367489

RESUMEN

The Prader-Willi/Angelman imprinted domain on human chromosome 15q11-q13 is regulated by an imprinting control center (IC) composed of a sequence around the SNRPN promoter (PWS-SRO) and a sequence located 35 kb upstream (AS-SRO). We have previously hypothesized that the primary imprint is established on AS-SRO, which then confers imprinting on PWS-SRO. Here we examine this hypothesis using a transgene that includes both AS-SRO and PWS-SRO sequences and carries out the entire imprinting process. The epigenetic features of this transgene resemble those previously observed on the endogenous locus, thus allowing analyses in the gametes and early embryo. We demonstrate that the primary imprint is in fact established in the gametes, creating a differentially methylated CpG cluster (DMR) on AS-SRO, presumably by an adjacent de novo signal (DNS). The DMR and DNS bind specific proteins: an allele-discrimination protein (ADP) and a de novo methylation protein, respectively. ADP, being a maternal protein, is involved in both the establishment of DMR in the gametes and in its maintenance through implantation when methylation of PWS-SRO on the maternal allele takes place. Importantly, while the AS-SRO is required in the gametes to confer methylation on PWS-SRO, it is dispensable later in development.


Asunto(s)
Síndrome de Angelman/genética , Embrión de Mamíferos/metabolismo , Epigénesis Genética , Impresión Genómica , Células Germinativas/metabolismo , Síndrome de Prader-Willi/genética , Regiones Promotoras Genéticas , Animales , Secuencia de Bases , Blastocisto/metabolismo , Inmunoprecipitación de Cromatina , Islas de CpG , Metilación de ADN , Desarrollo Embrionario , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos
14.
Hum Mol Genet ; 13(7): 751-62, 2004 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-14962980

RESUMEN

A cluster of imprinted genes on human chromosome 15q11-q13 (the PWS/AS domain) and its ortholog on mouse chromosome 7c is believed to be regulated by an imprinting control center. Although minideletions in this region in Angelman syndrome (AS) and Prader-Willi syndrome (PWS) patients revealed that two elements, shortest deletion regions of overlap in AS families and PWS families (AS-SRO and PWS-SRO), respectively, constitute the IC, the molecular mechanism that governs this regional control remains obscure. To understand how this imprinting center works, a mouse model was sought. The striking similarity between the human and mouse sequences allowed the generation of a minitransgene (AS-SMP) composed of AS-SRO and the Snrpn minimal promoter (SMP) the mouse ortholog of PWS-SRO. This minitransgene carries out, in a highly reliable and reproducible manner, all steps of the imprinting process. In an attempt to decipher the molecular mechanism of the imprinting process, we generated and tested for imprinting five minitransgenes based on AS-SMP, in which various parts of the 160 bp SMP were deleted. These experiments revealed a set of five cis elements that carry out the various steps of the imprinting process. This set includes: (i). two copies of a de novo methylation signal (DNS) that establish the maternal imprint during oogenesis; (ii). an allele discrimination signal that establishes the paternal imprint; and (iii). two elements that act together to maintain the paternal imprint. Two functionally redundant sets of the five elements were found on the respective endogenous mouse sequence explaining the previously published contradictory results of targeted deletion experiments. Together with the fact that all five elements bind specific proteins that are presumably the factors acting in trans in the imprinting process, our observations set the stage for a comprehensive study of the molecular mechanism involved in the control of the imprinting process.


Asunto(s)
Síndrome de Angelman/genética , Impresión Genómica , Síndrome de Prader-Willi/genética , Alelos , Animales , Southern Blotting , Encéfalo/metabolismo , Línea Celular , Cloranfenicol O-Acetiltransferasa/metabolismo , ADN/metabolismo , Metilación de ADN , Exones , Salud de la Familia , Femenino , Eliminación de Gen , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Modelos Biológicos , Modelos Genéticos , Mutación , Oocitos/metabolismo , Oogénesis , Regiones Promotoras Genéticas , Estructura Terciaria de Proteína , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transcripción Genética , Transfección , Transgenes
15.
Gene Expr Patterns ; 3(6): 697-702, 2003 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-14643676

RESUMEN

DNA methylation had been implicated in the assembly of multiprotein repressory complexes that affect chromatin architecture thereby rendering genes inactive. Proteins containing methyl binding domains (MBDs) are major components of these complexes. MBD3 is a component of the HDAC associated chromatin remodeling complex Mi2/NuRD. The addition of MBD2 to the Mi2/NuRD complex creates MeCP1, a complex that is known to inactivate methylated promoters. The undermethylated state of the mouse preimplantation embryo prompted us to investigate the known repressory complexes at this developmental stage. We found individual components of Mi2/NuRD: MBD3, Mi2, HDAC1 and HDAC2 to be expressed from a very early stage of embryo development and to localize in close proximity with each other and with constitutive heterochromatin by the blastula stage. Expression of MBD2, a component of MeCP1, starts in the blastula stage. Then it is also found to be in proximity with heterochromatin (based on DAPI staining) and with MBD3, Mi2 and HDAC1. In contrast, expression of MeCP2, an MBD containing component of a third repressory complex (MeCP2/Sin3A), is not seen in the preimplantation embryo. Our results suggest that both Mi2/NuRD and MeCP1 complexes are already present at the very early stages of embryo development, while a MeCP2 complex is added to the arsenal of repressory complexes post-implantation at a stage when DNA methylation takes place.


Asunto(s)
Blastocisto/enzimología , Histona Desacetilasas/análisis , Histona Desacetilasas/metabolismo , Ratones/embriología , Animales , Blastocisto/metabolismo , Núcleo Celular/enzimología , Embrión de Mamíferos/enzimología , Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Histona Desacetilasas/genética , Sustancias Macromoleculares , Ratones Endogámicos C57BL , Complejos Multiproteicos , ARN Mensajero/metabolismo
16.
EMBO J ; 21(21): 5807-14, 2002 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-12411498

RESUMEN

The 2 Mb domain on chromosome 15q11-q13 that carries the imprinted genes involved in Prader-Willi (PWS) and Angelman (AS) syndromes is under the control of an imprinting center comprising two regulatory regions, the PWS-SRO located around the SNRPN promoter and the AS-SRO located 35 kb upstream. Here we describe the results of an analysis of the epigenetic features of these two sequences and their interaction. The AS-SRO is sensitive to DNase I, and packaged with acetylated histone H4 and methylated histone H3(K4) only on the maternal allele, and this imprinted epigenetic structure is maintained in dividing cells despite the absence of clearcut differential DNA methylation. Genetic analysis shows that the maternal AS-SRO is essential for setting up the DNA methylation state and closed chromatin structure of the neighboring PWS-SRO. In contrast, the PWS-SRO has no influence on the epigenetic features of the AS-SRO. These results suggest a stepwise, unidirectional program in which structural imprinting at the AS-SRO brings about allele-specific repression of the maternal PWS-SRO, thereby preventing regional activation of genes on this allele.


Asunto(s)
Impresión Genómica , Síndrome de Prader-Willi/genética , Secuencia de Bases , Cromosomas Humanos Par 15 , Cartilla de ADN , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...